Ferrium® C64™ Chemical Composition (nominal wt. %)

<table>
<thead>
<tr>
<th></th>
<th>Fe</th>
<th>C</th>
<th>Co</th>
<th>Cr</th>
<th>Ni</th>
<th>Mo</th>
<th>W</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bal.</td>
<td>0.11</td>
<td>16.3</td>
<td>3.5</td>
<td>7.5</td>
<td>1.75</td>
<td>0.2</td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>

Overview of Ferrium C64 Properties

<table>
<thead>
<tr>
<th>YS (ksi)</th>
<th>UTS (ksi)</th>
<th>El (%)</th>
<th>RA (%)</th>
<th>Core Hardness (HRC)</th>
<th>K_{IC} (ksi$\sqrt{\text{in}}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>199</td>
<td>229</td>
<td>18</td>
<td>75</td>
<td>48-50</td>
<td>85</td>
</tr>
</tbody>
</table>

Materials By Design® Objective

Increased engine power transmission demands high-performance gears. The design objective for Ferrium® C64 was to develop a secondary-hardening gear and bearing steel with superior core and surface properties to current gear steels.

Description

Ferrium C64 is a member of a new class of martensitic secondary-hardening gear and bearing steels that utilize an efficient M$_2$C precipitate strengthening dispersion. Because of the efficiency of this strengthening dispersion, Ferrium C64 achieves carburized surface hardness (62-64 HRC) superior to current gear steels with the added benefit of increased core properties. A typical hardness profile of carburized Ferrium C64 is shown to the left.

Advantages

Ferrium C64 has surface-wear properties and fatigue properties superior to those found in current commercial alloys.
Processing

Ferrium C64 was designed for high-temperature carburizing. This allows solution heat treatment to be combined with the carburizing treatment and *Ferrium* C64 is therefore quenched directly from the carburizing temperature. After quenching to room temperature, *Ferrium* C64 is subjected to cryogenic treatment to assure a complete martensitic transformation. *Ferrium* C64 is typically tempered at 925°F (496°C) and has excellent thermal resistance approaching this temperature.

Case carburizing produces a gradient in the volume fraction of the M_2C carbides and results in an increase in hardness and surface residual compressive stress. The efficiency of the M_2C strengthening response allows this class of steels to achieve very high surface hardness with very low carbon content. Thus, this class of steels has the ability to achieve very high surface hardness without the formation of detrimental primary carbides. Final shot peening is recommended for superior fatigue performance.

Fatigue

Ferrium C64 has demonstrated increase in rolling sliding fatigue over conventional gear steels. Single tooth bending fatigue data is currently being generated.

Product Forms

Ferrium C64 is manufactured in typical ingot, bar and billet forms.

Other

US Patent Pending